

Craig Hane, Ph.D., Founder

Workforce Development: Module 5

1.1	Lessons Abbreviation Key Table
1.2	Exercises Introduction
G8 LESS	DN: AREA OF TRIANGLES AND RECTANGLES5
G8 Ar	ea of Triangles and Rectangles Problems6
G8E	
G8EA	
G8ES	
G8ES	A10
G9 LESS	ON: FORMULAS FOR POLYGONS11
G9 LESS G9 Fa	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12
G9 LESS G9 Fo G9E	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12
G9 LESS <i>G9 Fc</i> <i>G9E</i> <i>G9EA</i>	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12 13 14
G9 LESS G9 Fo G9E G9EA G9ES	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12 13 14 15 15
G9 LESS G9 Fc G9E G9EA G9ES G9ES	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12 13 14 14 15 A 16
G9 LESS <i>G9 Fc</i> <i>G9E</i> <i>G9EA</i> <i>G9ES</i> <i>G9ES</i>	DN: FORMULAS FOR POLYGONS 11 rmulas for Polygons Problems 12 13 13 14 14 15 16 SON: CIRCLES TT CIRCUMFERENCE 17

G10E	
G10EA	20
G10ES	21
G10ESA	22
G11 LESSON: CIRCLES AREA A = ∏ R2	23
G11 Circles ∏ Area Problems	24
G11E	25
G11EA	26
G11ES	27
G11FSA	
01110,	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS	29 30
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS G13E	29
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS G13E G13EA G13ES	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS G13E G13EA G13ESA	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS G13E G13EA G13ES G13ESA G13ESA G15 LESSON: VOLUMES BLOCKS AND CYLINDERS	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS G13E G13EA G13ES G13ESA G13ESA G15 LESSON: VOLUMES BLOCKS AND CYLINDERS G15E	29
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS	
G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS. G13E G13EA G13ES G13ESA G15 LESSON: VOLUMES BLOCKS AND CYLINDERS G15E G15EA G15EA	29

1.1 Lessons Abbreviation Key Table

- C = Calculator Lesson
- P = Pre-algebra Lesson
- A = Algebra Lesson
- G = Geometry Lesson
- T = Trigonometry Lesson
- S = Special Topics

The number following the letter is the Lesson Number.

- E = Exercises with Answers: Answers are in brackets [].
- EA = Exercises Answers: (only used when answers are not on the same page as the exercises.)
- ES = Exercises Supplemental: Complete if you feel you need additional problems to work.

1.2 Exercises Introduction

Why do the Exercises?

Mathematics is like a "game." The more you practice and play the game the better you will understand and play it.

The Foundation's Exercises, which accompany each lesson, are designed to reinforce the ideas presented to you in that lesson's video.

It is unlikely you will learn math very well by simply reading about it or listening to Dr. Del, or anyone else, or watching someone else doing it.

You WILL learn math by "doing math."

It is like learning to play a musical instrument, or write a book, or play a sport, or play chess, or cooking.

You will learn by practice.

Repetition is the key to mastery.

You will make mistakes. You will sometimes struggle to master a concept or technique. You may feel frustration sometimes "WE ALL DO."

But, as you learn and do math, you will begin to find pleasure and enjoyment in it as you would in any worthwhile endeavor. Treat it like a sport or game.

These exercises are the KEY to your SUCCESS!

ENJOY!

G8 LESSON: AREA OF TRIANGLES AND RECTANGLES

The Area of any polygon is a measure of its size.

The **Rectangle** is the simplest **polygon** and its **Area** is defined to be:

Area = ab where a and b are the lengths of its two sides.

A **Parallelogram** is a "**lopsided**" rectangle whose two adjacent sides have an angle X^o instead of 90^o.

Its **Area** can be calculated with a "**Correction Factor**" which is **SIN**(X^o)

A **Triangle** is one-half of a **parallelogram**. So, its **Area** can be expressed with this same correction factor. **See Below**.

Of course, if one does know the "height" then one can use an alternative formula for the Area, which is usually given.

G8 Area of Triangles and Rectangles Problems

Calculate the areas of the triangles and rectangles.

Note: The lateral units of measurement must be the same.

DO NOT multiply ft times yd for example.

Answers: # Area.

G8E

AREA OF TRIANGLES AND RECTANGLES

Calculate the areas of the triangles and rectangles.

Note: The lateral units of measurement must be the same.

G8EA

AREA OF TRIANGLES AND RECTANGLES

Calculate the areas of the triangles and rectangles.

Note: The lateral units of measurement must be the same.

AREA OF TRIANGLES AND RECTANGLES

G8ES

Identify the figures and calculate their areas. Be sure to check units and convert all numbers to the same unit where necessary.

G8ESA

AREA OF TRIANGLES AND RECTANGLES

Identify the figures and calculate their areas. Be sure to check units and convert all numbers to the same unit where necessary.

Triad Math, Inc. © 2018

G9 LESSON: FORMULAS FOR POLYGONS

The Area of any geometric object is a measure of its size.

The basic unit of Area measure is a square which measures one linear unit (U) per side. Then, by definition, the Area of such a square is 1 U^2 of 1 Square Unit.

The **Area** of any other closed geometric figure is defined to be the sum of **areas** of inscribed, non-overlapping, squares which are so small they fully fill up the figure.

A rigorous definition is possible, but challenging. However; intuitively, the idea of **Area** is pretty easy.

G9 Formulas for Polygons Problems

Identify the figures below and compute their Areas

Note: The Units of measure of the sides must be the same for all sides. For example, if one side is given in feet and the other side in inches, then you must convert one of the side's units accordingly. Must use same units for both sides.

Suppose a rectangle has one side 11/2 feet, and the other side 8 inches. Then, convert feet to inches.

Answers are at bottom of page # Name, Area.

G9E

FORMULAS FOR POLYGONS

Identify the figures and calculate their areas.

FORMULAS FOR POLYGONS

Identify the figures and calculate their areas.

Triad Math, Inc. © 2018

G10 LESSON: CIRCLES π CIRCUMFERENCE

A **Circle** is a set of points equidistant from a point called the Center. This distance is called the **Radius** of the circle.

The distance across the **Circle** from one side to the other through the center is called the **Diameter** = 2x**Radius**

The **Circumference**, **(C)** of the **Circle** is the distance around the **Circle**, sort of its **perimeter**.

The ratio of the Circumference to the Diameter is always the same number for any circle. It is called Pi or π

Thus $C = \pi D = 2\pi R$

 π = 3.141592654 . . . 22/7 is an approximation.

I usually use 3.14 unless I need a lot of accuracy, then I use 3.1416. π is called a "transcendental number."

Triad Math, Inc. © 2018

G10 Circles π Circumference Problems

The TI 30XA has a " π Key" we will use for π .

The three formulas we must remember are:

D = 2R and $C = 2\pi R$ and $A = \pi R^2$ (next lesson)

Find the unknown in the following problems.

G10E

CIRCLES π CIRCUMFERENCE

R = Radius D = Diameter C = Circumference

Find Unknowns

Triad Math, Inc. © 2018

G10EA

CIRCLES π CIRCUMFERENCE

R = Radius D = Diameter C = Circumference

Find Unknowns

G10ES

CIRCLES π CIRCUMFERENCE

Identify the figures and calculate their perimeters. Be sure to check units and convert all numbers to the same unit where necessary.

d = 460,689 light years

CIRCLES π CIRCUMFERENCE

Identify the figures and calculate their perimeters. Be sure to check units and convert all numbers to the same unit where necessary.

30° 700 ft

d = 460,689 light years

Circle, C = 2539.32 ft

Circle, C = $460,689\pi$ ly = 1,447,297.2 ly

G11 LESSON: CIRCLES AREA $A = \pi R2$

A **Circle** is a set of points equidistant from a point called the **Center**. This distance is called the **Radius** of the **circle**.

 π is defined to be C/D = Circumference/Diameter

The Area (A) of the Circle turns out to be $A = \pi R^2$

This is a remarkable fact first discovered by the Greek genius mathematician **Archimedes**. It now is very easy to calculate the **Area** of any **Circle** using a calculator.

Remember: π is about 3.14

Archimedes "Proof" of Area. A = $(C/2)x(D/2) = (2\pi R/2)x(2R/2) = \pi R^2$

G11 Circles π Area Problems

The TI 30XA has a " $\underline{\Pi}$ Key" we will use for π .

The three formulas we must remember are:

D = 2R and $C = 2\pi R$ and $A = \pi R2$ (next lesson)

Find the Area in the following problems.

G11E

CIRCLES π AREA

R = Radius, D = Diameter, C = Circumference

Find Area

G11EA

CIRCLES T AREA

R = Radius, D = Diameter, C = Circumference

Find Area

G11ES

Calculate the areas of the figures below. Be sure to treat units appropriately!

R = Radius, D = Diameter, C = Circumference

G11ESA

Calculate the areas of the figures below. Be sure to treat units appropriately!

R = Radius, D = Diameter, C = Circumference

A = 48,415 mi²

A = 19.6 ft²

A = 0.385 mm²

A = 43.57 m²

1700 yd

Triad Math, Inc. © 2018

G13 LESSON: SURFACE AREAS BLOCKS AND CYLINDERS

Calculate the Area of each "face" or "side" for a block.

The Ends and then the Lateral Area for the Cylinder

Area is measured in Square Units, U²

SURFACE AREAS BLOCKS AND CYLINDERS

Calculate the Total Surface Area, U^2 , in each case.

G13E

G13EA

SURFACE AREAS BLOCKS AND CYLINDERS

Calculate the Total Surface Area, U^2 , in each case.

G13ES

SURFACE AREAS BLOCKS AND CYLINDERS

Calculate the surface area of the figures below. Be sure to treat units appropriately!

G13ESA

SURFACE AREAS BLOCKS AND CYLINDERS

Calculate the surface area of the figures below. Be sure to treat units appropriately!

SA = 644 m²

Note: the cylinder of length 140 ft is centered inside the block.

SA = 68,632.3 ft²

321 mi 476 mi 340 mi

SA = 847,552 mi²

2.21 mm

SA = 19.12 mm²

Triad Math, Inc. © 2018

G15 LESSON: VOLUMES BLOCKS AND CYLINDERS

Volume = (Area of Base) × Height

Volume is measured in Cubic Units, U^3

G15EA

VOLUMES BLOCKS AND CYLINDERS

Calculate the Volume, U^3 , in each case.

G15ES

VOLUMES BLOCKS AND CYLINDERS

Find the volumes of the figures below. Be mindful of units!

Triad Math, Inc. © 2018

G15ESA

VOLUMES BLOCKS AND CYLINDERS

Find the volumes of the figures below. Be mindful of units!

4.5 yd

2.3 m

The cylinder of length 65 ft is centered inside the block.

V = 129,337 ft3

Triad Math, Inc. © 2018